Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Yang Farina, ${ }^{\text {a }}$ Ibrahim Baba, ${ }^{\text {a }}$
A. Hamid Othman, ${ }^{\text {a }}$

Ibrahim Abdul Razak, ${ }^{\text {b }}$
Hoong-Kun Fun ${ }^{\text {b }}$ and Seik Weng $\mathrm{Ng}^{\text {c }}$ *
${ }^{\text {a }}$ School of Chemical Sciences, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia, ${ }^{\mathbf{b}}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\mathrm{c}}$ Institute of Postgraduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail:
h1nswen@umcsd.um.edu.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{S}-\mathrm{C})=0.008 \AA$
R factor $=0.037$
ωR factor $=0.080$
Data-to-parameter ratio $=33.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Tetragonal modification of 1,1,3,3,5,5-hexamethyl-cyclo-1,3,5-tristannathiane

The space group of the title compound, $\left[\mathrm{Sn}_{3} \mathrm{~S}_{3}\left(\mathrm{CH}_{3}\right)_{6}\right]$, reported as $P 4_{1}$, is corrected to $P 4_{2} 2_{1} 2$.

Comment

Tris(dimethyltin sulfide), 1,1,3,3,5,5-hexamethylcyclo-1,3,5tristannatiane, (I), was the unexpected product in our attempt at synthesizing dimethyltin bis(dipropyldithiocarbamate) from dimethyltin dichloride, carbon disulfide and n-propylamine (see Experimental). The literature reports that the compound crystallizes in monoclinic ($P 2_{1} / c$; Jacobsen \& Krebs, 1977) and tetragonal (Menzebach \& Bleckmann, 1975) modifications. The tetragonal modification was refined in the $P 4_{1}$ space group; however, the checking program PLATON (Spek, 1990) finds missing symmetry elements, and the $P 4_{2} 2_{1} 2$ space group is suggested. This space group is now authenticated in the present study. The two independent Sn atoms in the tetragonal modification exist in tetrahedral geometries; adjacent molecules are linked by an $\mathrm{Sn} \cdots \mathrm{S}$ interaction of 3.902 (2) \AA into a linear chain.

Experimental

A solution of carbon disulfide (5 mmol) in methanol (5 ml) was added to a methanolic solution (20 ml) of a mixture of dimethyl$\operatorname{tin}(\mathrm{IV})$ chloride $(2.5 \mathrm{mmol})$ and n-propylamine $(5 \mathrm{mmol})$. The reagent solutions were cooled to 273 K , and the carbon disulfide solution was then added at a rate so that the temperature of the mixture did not rise above 278 K . The mixture was stirred at 275 K for 2 h . A cream-colored solid was formed that was collected by filtration and washed with cold methanol $(2 \times 5 \mathrm{ml})$. The product was recrystallized from a methanol/chloroform ($3: 2 \mathrm{v} / \mathrm{v}$) mixture to afford colorless crystals.

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Sn}_{3} \mathrm{~S}_{3}\left(\mathrm{CH}_{3}\right)_{6}\right]} \\
& M_{r}=542.45 \\
& \text { Tetragonal, } P 4_{1} 2_{1} 2 \\
& a=9.7249(1) \AA \\
& c=17.3867(3) \AA \\
& V=1644.32(4) \AA^{3} \\
& Z=4 \\
& D_{x}=2.191 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Received 4 December 2000
Accepted 12 December 2000 Online 22 December 2000

Figure 1
ORTEPII (Johnson, 1976) plot of tris(dimethyltin sulfide) at the 50% probability level. H atoms are shown as circles of arbitrary radii.

Data collection

Siemens CCD area-detector diffractometer

ω scans

Absorption correction: empirical (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.414, T_{\text {max }}=0.697$
11469 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.080$
$S=0.94$
1995 reflections
59 parameters
H -atom parameters constrained

1995 independent reflections 1545 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.088$
$\theta_{\text {max }}=28.2^{\circ}$
$h=-9 \rightarrow 12$
$k=-12 \rightarrow 12$
$l=-22 \rightarrow 22$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0368 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.50 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.86 \mathrm{e}^{-3}$
Absolute structure: Flack \&
Schwarzenbach (1988)
Flack parameter $=0.08(7)$

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$\mathrm{Sn} 1-\mathrm{C} 1$	$2.125(8)$	$\mathrm{Sn} 1-\mathrm{S} 1$	$2.406(2)$
$\mathrm{Sn} 2-\mathrm{C} 2$	$2.134(7)$	$\mathrm{Sn} 2-\mathrm{S} 1$	$2.435(2)$
$\mathrm{Sn} 2-\mathrm{C} 3$	$2.126(7)$	$\mathrm{Sn} 2-\mathrm{S} 2$	$2.424(2)$
$\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{C} 1^{\mathrm{i}}$	$113.9(5)$	$\mathrm{C} 2-\mathrm{Sn} 2-\mathrm{S} 2$	$104.0(3)$
$\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{S} 1$	$111.9(3)$	$\mathrm{C} 3-\mathrm{Sn} 2-\mathrm{S} 1$	$108.2(2)$
$\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{S} 1^{\mathrm{i}}$	$105.3(3)$	$\mathrm{C} 3-\mathrm{Sn} 2-\mathrm{S} 2$	$112.2(2)$
$\mathrm{S} 1-\mathrm{Sn} 1-\mathrm{S} 1^{\mathrm{i}}$	$108.6(1)$	$\mathrm{S} 1-\mathrm{Sn} 2-\mathrm{S} 2$	$107.1(1)$
$\mathrm{C} 2-\mathrm{Sn} 2-\mathrm{C} 3$	$119.1(3)$	$\mathrm{Sn} 1-\mathrm{S} 1-\mathrm{Sn} 2$	$103.1(1)$
$\mathrm{C} 2-\mathrm{Sn} 2-\mathrm{S} 1$	$105.5(2)$	$\mathrm{Sn} 2-\mathrm{S} 2-\mathrm{Sn} 2^{\mathrm{i}}$	$103.1(1)$

Symmetry code: (i) $y, x,-z$.

Of the 1995 reflections, 1216 were unique and 779 were Friedel pairs.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank Univerisit Kebangsaan Malaysia and the National Science Council for R\&D, Malaysia (IRPA 09-02-02-0010, 09-02-02-0133, 09-02-02-0096, 09-02-03-0662, 190-9609-2801), for supporting this work

References

Flack, H. D. \& Schwarzenbach, D. (1988). Acta Cryst. A44, 499-506. Jacobsen, H.-J. \& Krebs, B. (1977). J. Organomet. Chem. 136, 333-338.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Menzebach, B. \& Bleckmann, P. (1975). J. Organomet. Chem. 91, 291-294.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1996). SAINT and SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.

