Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yang Farina,^a Ibrahim Baba,^a A. Hamid Othman,^a Ibrahim Abdul Razak,^b Hoong-Kun Fun^b and Seik Weng Ng^c*

^aSchool of Chemical Sciences, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia, ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^cInstitute of Postgraduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: h1nswen@umcsd.um.edu.my

Key indicators

Single-crystal X-ray study T = 298 KMean σ (S-C) = 0.008 Å R factor = 0.037 wR factor = 0.080 Data-to-parameter ratio = 33.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2001 International Union of Crystallography Printed in Great Britain – all rights reserved The space group of the title compound, $[Sn_3S_3(CH_3)_6]$, reported as $P4_1$, is corrected to $P4_22_12$.

Received 4 December 2000 Accepted 12 December 2000 Online 22 December 2000

Comment

Tris(dimethyltin sulfide), 1,1,3,3,5,5-hexamethylcyclo-1,3,5tristannatiane, (I), was the unexpected product in our attempt at synthesizing dimethyltin bis(dipropyldithiocarbamate) from dimethyltin dichloride, carbon disulfide and *n*-propylamine (see *Experimental*). The literature reports that the compound crystallizes in monoclinic ($P2_1/c$; Jacobsen & Krebs, 1977) and tetragonal (Menzebach & Bleckmann, 1975) modifications. The tetragonal modification was refined in the $P4_1$ space group; however, the checking program *PLATON* (Spek, 1990) finds missing symmetry elements, and the $P4_22_12$ space group is suggested. This space group is now authenticated in the present study. The two independent Sn atoms in the tetragonal modification exist in tetrahedral geometries; adjacent molecules are linked by an Sn···S interaction of 3.902 (2) Å into a linear chain.

Experimental

A solution of carbon disulfide (5 mmol) in methanol (5 ml) was added to a methanolic solution (20 ml) of a mixture of dimethyltin(IV) chloride (2.5 mmol) and *n*-propylamine (5 mmol). The reagent solutions were cooled to 273 K, and the carbon disulfide solution was then added at a rate so that the temperature of the mixture did not rise above 278 K. The mixture was stirred at 275 K for 2 h. A cream-colored solid was formed that was collected by filtration and washed with cold methanol (2×5 ml). The product was recrystallized from a methanol/chloroform (3:2 v/v) mixture to afford colorless crystals.

Crystal data

$Sn_3S_3(CH_3)_6$	Mo $K\alpha$ radiation	
$M_r = 542.45$	Cell parameters from 5984	
Tetragonal, $P4_12_12$	reflections	
a = 9.7249(1) Å	$\theta = 2.4 - 28.2^{\circ}$	
c = 17.3867(3) Å	$\mu = 4.87 \text{ mm}^{-1}$	
V = 1644.32 (4) Å ³	T = 298 (2) K	
Z = 4	Block, colorless	
$D_x = 2.191 \text{ Mg m}^{-3}$	$0.22 \times 0.14 \times 0.08 \text{ mm}$	

Acta Cryst. (2001). E57, m37–m38

Figure 1

ORTEPII (Johnson, 1976) plot of tris(dimethyltin sulfide) at the 50% probability level. H atoms are shown as circles of arbitrary radii.

Data collection

Siemens CCD area-detector	1995 independent reflections	
diffractometer	1545 reflections with $I > 2\sigma(I)$	
ω scans	$R_{\rm int} = 0.088$	
Absorption correction: empirical	$\theta_{\rm max} = 28.2^{\circ}$	
(SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 12$	
$T_{\min} = 0.414, T_{\max} = 0.697$	$k = -12 \rightarrow 12$	
11 469 measured reflections	$l = -22 \rightarrow 22$	

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.037$ wR(F²) = 0.080 S = 0.941995 reflections 59 parameters H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0368P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

where $I = (I_0 + 2I_c)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.86 \text{ e } \text{\AA}^{-3}$
Absolute structure: Flack &
Schwarzenbach (1988)
Flack parameter $= 0.08$ (7)

Table 1 Selected geometric parameters (Å, °).

Sn1-C1	2.125 (8)	Sn1-S1	2.406 (2)
Sn2-C2	2.134 (7)	Sn2-S1	2.435 (2)
Sn2-C3	2.126 (7)	Sn2-S2	2.424 (2)
$\begin{array}{c} C1\!-\!Sn1\!-\!C1^{i}\\ C1\!-\!Sn1\!-\!S1\\ C1\!-\!Sn1\!-\!S1^{i}\\ S1\!-\!Sn1\!-\!S1^{i} \end{array}$	113.9 (5)	C2-Sn2-S2	104.0 (3)
	111.9 (3)	C3-Sn2-S1	108.2 (2)
	105.3 (3)	C3-Sn2-S2	112.2 (2)
	108.6 (1)	S1-Sn2-S2	107.1 (1)
C2-Sn2-C3	119.1 (3)	$\begin{array}{c} Sn1{-}S1{-}Sn2\\ Sn2{-}S2{-}Sn2^i \end{array}$	103.1 (1)
C2-Sn2-S1	105.5 (2)		103.1 (1)

Symmetry code: (i) y, x, -z.

Of the 1995 reflections, 1216 were unique and 779 were Friedel pairs.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank Universiit Kebangsaan Malaysia and the National Science Council for R&D, Malaysia (IRPA 09-02-02-0010, 09-02-02-0133, 09-02-02-0096, 09-02-03-0662, 190-9609-2801), for supporting this work

References

Flack, H. D. & Schwarzenbach, D. (1988). Acta Cryst. A44, 499-506.

Jacobsen, H.-J. & Krebs, B. (1977). J. Organomet. Chem. 136, 333-338.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

- Menzebach, B. & Bleckmann, P. (1975). J. Organomet. Chem. 91, 291-294.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

Göttingen, Germany.

Siemens (1996). SAINT and SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Spek, A. L. (1990). Acta Cryst. A46, C-34.